3.612 \(\int \frac{\cos ^2(c+d x) (1-\cos ^2(c+d x))}{(a+b \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=182 \[ -\frac{\left (-9 a^2 b^2+6 a^4+2 b^4\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^4 d (a-b)^{3/2} (a+b)^{3/2}}-\frac{a \left (3 a^2-2 b^2\right ) \sin (c+d x)}{2 b^3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac{3 a x}{b^4}+\frac{\sin (c+d x) \cos ^2(c+d x)}{2 b d (a+b \cos (c+d x))^2}-\frac{3 \sin (c+d x)}{2 b^3 d} \]

[Out]

(3*a*x)/b^4 - ((6*a^4 - 9*a^2*b^2 + 2*b^4)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(3/2)*
b^4*(a + b)^(3/2)*d) - (3*Sin[c + d*x])/(2*b^3*d) + (Cos[c + d*x]^2*Sin[c + d*x])/(2*b*d*(a + b*Cos[c + d*x])^
2) - (a*(3*a^2 - 2*b^2)*Sin[c + d*x])/(2*b^3*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.458377, antiderivative size = 182, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {3048, 3032, 3023, 2735, 2659, 205} \[ -\frac{\left (-9 a^2 b^2+6 a^4+2 b^4\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^4 d (a-b)^{3/2} (a+b)^{3/2}}-\frac{a \left (3 a^2-2 b^2\right ) \sin (c+d x)}{2 b^3 d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac{3 a x}{b^4}+\frac{\sin (c+d x) \cos ^2(c+d x)}{2 b d (a+b \cos (c+d x))^2}-\frac{3 \sin (c+d x)}{2 b^3 d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*(1 - Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^3,x]

[Out]

(3*a*x)/b^4 - ((6*a^4 - 9*a^2*b^2 + 2*b^4)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(3/2)*
b^4*(a + b)^(3/2)*d) - (3*Sin[c + d*x])/(2*b^3*d) + (Cos[c + d*x]^2*Sin[c + d*x])/(2*b*d*(a + b*Cos[c + d*x])^
2) - (a*(3*a^2 - 2*b^2)*Sin[c + d*x])/(2*b^3*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 3048

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m
 - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n +
 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2*(
m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3032

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (C_.)*sin[(e
_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((b*c - a*d)*(A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1
))/(b^2*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(b^2*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b
*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f
*x] + b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x) \left (1-\cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^3} \, dx &=\frac{\cos ^2(c+d x) \sin (c+d x)}{2 b d (a+b \cos (c+d x))^2}-\frac{\int \frac{\cos (c+d x) \left (-2 \left (a^2-b^2\right )+3 \left (a^2-b^2\right ) \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx}{2 b \left (a^2-b^2\right )}\\ &=\frac{\cos ^2(c+d x) \sin (c+d x)}{2 b d (a+b \cos (c+d x))^2}-\frac{a \left (3 a^2-2 b^2\right ) \sin (c+d x)}{2 b^3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac{\int \frac{b \left (3 a^4-5 a^2 b^2+2 b^4\right )+3 a \left (a^2-b^2\right )^2 \cos (c+d x)-3 b \left (a^2-b^2\right )^2 \cos ^2(c+d x)}{a+b \cos (c+d x)} \, dx}{2 b^3 \left (a^2-b^2\right )^2}\\ &=-\frac{3 \sin (c+d x)}{2 b^3 d}+\frac{\cos ^2(c+d x) \sin (c+d x)}{2 b d (a+b \cos (c+d x))^2}-\frac{a \left (3 a^2-2 b^2\right ) \sin (c+d x)}{2 b^3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac{\int \frac{b^2 \left (3 a^4-5 a^2 b^2+2 b^4\right )+6 a b \left (a^2-b^2\right )^2 \cos (c+d x)}{a+b \cos (c+d x)} \, dx}{2 b^4 \left (a^2-b^2\right )^2}\\ &=\frac{3 a x}{b^4}-\frac{3 \sin (c+d x)}{2 b^3 d}+\frac{\cos ^2(c+d x) \sin (c+d x)}{2 b d (a+b \cos (c+d x))^2}-\frac{a \left (3 a^2-2 b^2\right ) \sin (c+d x)}{2 b^3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\left (6 a^4-9 a^2 b^2+2 b^4\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{2 b^4 \left (a^2-b^2\right )}\\ &=\frac{3 a x}{b^4}-\frac{3 \sin (c+d x)}{2 b^3 d}+\frac{\cos ^2(c+d x) \sin (c+d x)}{2 b d (a+b \cos (c+d x))^2}-\frac{a \left (3 a^2-2 b^2\right ) \sin (c+d x)}{2 b^3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\left (6 a^4-9 a^2 b^2+2 b^4\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^4 \left (a^2-b^2\right ) d}\\ &=\frac{3 a x}{b^4}-\frac{\left (6 a^4-9 a^2 b^2+2 b^4\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{(a-b)^{3/2} b^4 (a+b)^{3/2} d}-\frac{3 \sin (c+d x)}{2 b^3 d}+\frac{\cos ^2(c+d x) \sin (c+d x)}{2 b d (a+b \cos (c+d x))^2}-\frac{a \left (3 a^2-2 b^2\right ) \sin (c+d x)}{2 b^3 \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.978476, size = 159, normalized size = 0.87 \[ \frac{\frac{a b \left (4 b^2-5 a^2\right ) \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}-\frac{2 \left (-9 a^2 b^2+6 a^4+2 b^4\right ) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\left (b^2-a^2\right )^{3/2}}+\frac{a^2 b \sin (c+d x)}{(a+b \cos (c+d x))^2}+6 a (c+d x)-2 b \sin (c+d x)}{2 b^4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*(1 - Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^3,x]

[Out]

(6*a*(c + d*x) - (2*(6*a^4 - 9*a^2*b^2 + 2*b^4)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 +
b^2)^(3/2) - 2*b*Sin[c + d*x] + (a^2*b*Sin[c + d*x])/(a + b*Cos[c + d*x])^2 + (a*b*(-5*a^2 + 4*b^2)*Sin[c + d*
x])/((a - b)*(a + b)*(a + b*Cos[c + d*x])))/(2*b^4*d)

________________________________________________________________________________________

Maple [B]  time = 0.037, size = 576, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(1-cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x)

[Out]

-2/d/b^3*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c)^2+1)+6/d/b^4*arctan(tan(1/2*d*x+1/2*c))*a-4/d*a^3/b^3/(a*tan(1
/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)*tan(1/2*d*x+1/2*c)^3+1/d*a^2/b^2/(a*tan(1/2*d*x+1/2*c)^2-t
an(1/2*d*x+1/2*c)^2*b+a+b)^2/(a+b)*tan(1/2*d*x+1/2*c)^3+4/d/b/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a
+b)^2*a/(a+b)*tan(1/2*d*x+1/2*c)^3-4/d*a^3/b^3/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)*tan
(1/2*d*x+1/2*c)-1/d*a^2/b^2/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2/(a-b)*tan(1/2*d*x+1/2*c)+4/d
/b/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)^2*a/(a-b)*tan(1/2*d*x+1/2*c)-6/d*a^4/b^4/(a^2-b^2)/((a+
b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))+9/d*a^2/b^2/(a^2-b^2)/((a+b)*(a-b))^(1/2)
*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))-2/d/(a^2-b^2)/((a+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d
*x+1/2*c)/((a+b)*(a-b))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(1-cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.8494, size = 1879, normalized size = 10.32 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(1-cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

[1/4*(12*(a^5*b^2 - 2*a^3*b^4 + a*b^6)*d*x*cos(d*x + c)^2 + 24*(a^6*b - 2*a^4*b^3 + a^2*b^5)*d*x*cos(d*x + c)
+ 12*(a^7 - 2*a^5*b^2 + a^3*b^4)*d*x + (6*a^6 - 9*a^4*b^2 + 2*a^2*b^4 + (6*a^4*b^2 - 9*a^2*b^4 + 2*b^6)*cos(d*
x + c)^2 + 2*(6*a^5*b - 9*a^3*b^3 + 2*a*b^5)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 -
 b^2)*cos(d*x + c)^2 + 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2
 + 2*a*b*cos(d*x + c) + a^2)) - 2*(6*a^6*b - 11*a^4*b^3 + 5*a^2*b^5 + 2*(a^4*b^3 - 2*a^2*b^5 + b^7)*cos(d*x +
c)^2 + (9*a^5*b^2 - 17*a^3*b^4 + 8*a*b^6)*cos(d*x + c))*sin(d*x + c))/((a^4*b^6 - 2*a^2*b^8 + b^10)*d*cos(d*x
+ c)^2 + 2*(a^5*b^5 - 2*a^3*b^7 + a*b^9)*d*cos(d*x + c) + (a^6*b^4 - 2*a^4*b^6 + a^2*b^8)*d), 1/2*(6*(a^5*b^2
- 2*a^3*b^4 + a*b^6)*d*x*cos(d*x + c)^2 + 12*(a^6*b - 2*a^4*b^3 + a^2*b^5)*d*x*cos(d*x + c) + 6*(a^7 - 2*a^5*b
^2 + a^3*b^4)*d*x - (6*a^6 - 9*a^4*b^2 + 2*a^2*b^4 + (6*a^4*b^2 - 9*a^2*b^4 + 2*b^6)*cos(d*x + c)^2 + 2*(6*a^5
*b - 9*a^3*b^3 + 2*a*b^5)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x
+ c))) - (6*a^6*b - 11*a^4*b^3 + 5*a^2*b^5 + 2*(a^4*b^3 - 2*a^2*b^5 + b^7)*cos(d*x + c)^2 + (9*a^5*b^2 - 17*a^
3*b^4 + 8*a*b^6)*cos(d*x + c))*sin(d*x + c))/((a^4*b^6 - 2*a^2*b^8 + b^10)*d*cos(d*x + c)^2 + 2*(a^5*b^5 - 2*a
^3*b^7 + a*b^9)*d*cos(d*x + c) + (a^6*b^4 - 2*a^4*b^6 + a^2*b^8)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(1-cos(d*x+c)**2)/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.73813, size = 450, normalized size = 2.47 \begin{align*} \frac{\frac{{\left (6 \, a^{4} - 9 \, a^{2} b^{2} + 2 \, b^{4}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{{\left (a^{2} b^{4} - b^{6}\right )} \sqrt{a^{2} - b^{2}}} - \frac{4 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 5 \, a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 4 \, a b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 4 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 5 \, a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 3 \, a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 4 \, a b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a^{2} b^{3} - b^{5}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a + b\right )}^{2}} + \frac{3 \,{\left (d x + c\right )} a}{b^{4}} - \frac{2 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )} b^{3}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(1-cos(d*x+c)^2)/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

((6*a^4 - 9*a^2*b^2 + 2*b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*
c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^2*b^4 - b^6)*sqrt(a^2 - b^2)) - (4*a^4*tan(1/2*d*x + 1/2*c)
^3 - 5*a^3*b*tan(1/2*d*x + 1/2*c)^3 - 3*a^2*b^2*tan(1/2*d*x + 1/2*c)^3 + 4*a*b^3*tan(1/2*d*x + 1/2*c)^3 + 4*a^
4*tan(1/2*d*x + 1/2*c) + 5*a^3*b*tan(1/2*d*x + 1/2*c) - 3*a^2*b^2*tan(1/2*d*x + 1/2*c) - 4*a*b^3*tan(1/2*d*x +
 1/2*c))/((a^2*b^3 - b^5)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)^2) + 3*(d*x + c)*a/b^4
 - 2*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 + 1)*b^3))/d